Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Kanji Kubo* and Akira Mori†

Institute of Advanced Material Study, 86, Kyushu University, Kasuga-koen, Kasuga, Fukuoka 816-8580, Japan
\dagger Additional correspondence author.

Correspondence e-mail:
kubo-k@cm.kyushu-u.ac.jp

Key indicators

Single-crystal X-ray study
$T=296 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.054$
$w R$ factor $=0.158$
Data-to-parameter ratio $=18.4$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2001 International Union of Crystallography Printed in Great Britain - all rights reserved

Ethyl 4-(2,3,5,6-tetrahydro-3,3-dimethyl-5,6-dioxo-1,2-cycloheptapyrazol-2-yl)benzoate

The title compound, $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{4}$, adopts an almost flattened conformation. The dihydropyrazole ring is almost coplanar with the seven-membered ring, the benzene ring, and the COO group. The plane defined by the α-dicarbonyl group intersects the seven-membered ring at an angle of 46.7 (1).

Comment

Hinopurpurins (2-aryl-2,3,5,6-tetrahydro-3,3-dimethyl-5,6-di-oxo-1,2-cycloheptapyrazole) are known to be stable dyes (Mori et al., 1989). The title compound, 4-ethoxycarbonylphenylhinopurpurin, (I), showed a remarkably large negative halochromism; 484 nm in ethyl acetate, 517, 566, and 600 (sh) nm in trifluoroacetic acid, and 455 nm in concentrated sulfuric acid. However, the crystal structures of hinopurpurins have never been elucidated. We now report the structure of (I) to elucidate its properties as a dye.

(I)

The $\mathrm{C}-\mathrm{C}$ and $\mathrm{C}=\mathrm{C}$ bond lengths of the seven-membered ring show apparent bond alternation. The $\mathrm{C} 1=\mathrm{O} 1$ [1.220 (4) \AA] and $\mathrm{C} 2=\mathrm{O} 2$ [1.225 (4) \AA] bond lengths are similar to that ($1.259 \AA$) of tropone (Barrow et al., 1973). The $\mathrm{N} 1-\mathrm{N} 2[1.332(3) \AA]$ and $\mathrm{N} 1=\mathrm{C} 5[1.328$ (3) \AA] bond lengths are close to those [1.343 \AA for $\mathrm{N}-\mathrm{N}$ and $1.322 \AA$ for $\mathrm{N}=\mathrm{C}$] of pyrazole (la Cour \& Rasmussen, 1973).

The deviations of each atom from the least-squares plane of the seven-membered ring are -0.134 (4) \AA for $\mathrm{C} 1,0.097$ (4) \AA for $\mathrm{C} 2,0.025$ (4) \AA for $\mathrm{C} 3,-0.041$ (4) \AA for $\mathrm{C} 4,-0.014$ (4) \AA for C5, 0.064 (4) \AA for C6, and 0.032 (4) \AA for C7. The diketone structure (A) (least-squares plane defined by atoms C 1 , $\mathrm{C} 2, \mathrm{O} 1$ and O 2) intersects the seven-membered ring (B) (defined by atoms $\mathrm{C} 1-\mathrm{C} 7$) at an angle of $15.5(1)^{\circ}$. The dihydropyrazole ring (C) (defined by atoms $\mathrm{N} 1, \mathrm{~N} 2, \mathrm{C} 4, \mathrm{C} 5$ and C 8) is almost coplanar with the seven-membered ring (B), the benzene ring (D), and the carboxy group (E) (defined by atoms $\mathrm{C} 17, \mathrm{O} 3$ and O4). The dihedral angles between planes B and C, between C and D, and between C and E are 4.1 (1), 5.3 (1) and $4.3(4)^{\circ}$, respectively.

Experimental

To a pyridine solution (2 ml) of 4-isopropyltropolone (164 mg , 1.0 mmol) was added drop by drop an aqueous solution of diazotized 4-ethoxycarbonylaniline ($248 \mathrm{mg}, 1.5 \mathrm{mmol}$) at 273 to 278 K with stirring for 2 h . After the solution was diluted with water (10 ml), the

Received 26 February 2001
Accepted 12 March 2001
Online 16 March 2001
precipitate was filtered and dried. An ethanol solution of the precipitate was refluxed for 4 h and cooled to yield the title compound (I) ($142 \mathrm{mg}, 42 \%$) by filtration (Mori et al., 1989). The single crystals of (I) were obtained by recrystallization from chloroform.

Crystal data

$\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{4}$
$M_{r}=338.35$
Orthorhombic, Pbca
$a=19.028$ (3) \AA
$b=19.166$ (3) \AA
$c=9.4466$ (5) A
$V=3445.1$ (7) \AA^{3}
$Z=8$
$D_{x}=1.305 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Enraf-Nonius CAD-4 diffractometer
$\omega-2 \theta$ scans
Absorption correction: ψ scan (North et al., 1968)
$T_{\text {min }}=0.969, T_{\text {max }}=0.998$
4149 measured reflections
4149 independent reflections
Mo $K \alpha$ radiation
Cell parameters from 16 reflections
$\theta=9.2-17.9^{\circ}$
$\mu=0.09 \mathrm{~mm}^{-1}$
$T=296$ (2) K
Prism, red
$0.33 \times 0.27 \times 0.13 \mathrm{~mm}$

Refinement

Refinement on F^{2}

> H-atom parameters constrained $w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0539 P)^{2}\right]$
> where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
> $(\Delta / \sigma)_{\max }=0.001$
> $\Delta \rho_{\max }=0.20 \mathrm{e}^{-3}$
> $\Delta \rho_{\min }=-0.24 \mathrm{e}^{-3}$

1280 reflections with $I>2 \sigma(I)$
$\theta_{\text {max }}=28.0^{\circ}$
$h=0 \rightarrow 25$
$k=-25 \rightarrow 0$
$l=0 \rightarrow 12$
3 standard reflections
frequency: 120 min
intensity decay: 0.5%
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.054$
$w R\left(F^{2}\right)=0.158$
$S=0.89$
4149 reflections
226 parameters

Table 1
Selected geometric parameters $\left(\AA,^{\circ}\right)$.

N1-C5	$1.328(3)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.439(4)$
$\mathrm{N} 1-\mathrm{N} 2$	$1.332(3)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.340(4)$
$\mathrm{N} 2-\mathrm{C} 8$	$1.486(4)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.426(4)$
$\mathrm{N} 2-\mathrm{C} 11$	$1.406(3)$	$\mathrm{C} 4-\mathrm{C} 8$	$1.520(4)$
$\mathrm{O} 1-\mathrm{C} 1$	$1.220(4)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.428(4)$
$\mathrm{O} 2-\mathrm{C} 2$	$1.225(4)$	$\mathrm{C} 6-\mathrm{C} 7$	$1.339(4)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.533(5)$	$\mathrm{C} 8-\mathrm{C} 9$	$1.536(4)$
$\mathrm{C} 1-\mathrm{C} 7$	$1.455(5)$	$\mathrm{C} 8-\mathrm{C} 10$	$1.533(4)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{O} 2$	$-19.3(5)$	$\mathrm{C} 18-\mathrm{O} 4-\mathrm{C} 17-\mathrm{C} 14$	$175.6(3)$
$\mathrm{N} 1-\mathrm{N} 2-\mathrm{C} 8-\mathrm{C} 9$	$117.7(3)$	$\mathrm{C} 13-\mathrm{C} 14-\mathrm{C} 17-\mathrm{O} 3$	$-178.4(3)$
$\mathrm{N} 1-\mathrm{N} 2-\mathrm{C} 8-\mathrm{C} 10$	$-114.9(3)$	$\mathrm{C} 13-\mathrm{C} 14-\mathrm{C} 17-\mathrm{O} 4$	$1.6(5)$
$\mathrm{N} 1-\mathrm{N} 2-\mathrm{C} 11-\mathrm{C} 12$	$175.4(3)$	$\mathrm{C} 17-\mathrm{O} 4-\mathrm{C} 18-\mathrm{C} 19$	$169.5(3)$
$\mathrm{N} 1-\mathrm{N} 2-\mathrm{C} 11-\mathrm{C} 16$	$-4.8(4)$		

All H atoms were located at ideal positions and restrained with $U_{\text {iso }}$ held fixed to $1.2 U_{\text {eq }}$ of the parent atoms.

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: MolEN (Fair, 1990); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: Xtal_GX (Hall \& du Boulay, 1995); software used to prepare material for publication: SHELXL97.

References

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. \& Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
Barrow, M. J. Mills, O. S. \& Filippini, G. (1973). J. Chem. Soc. Chem. Commun. pp. 66-67.
Cour, T. la \& Rasmussen, S. E. (1973). Acta Chem. Scand. 27, 1845-1854.
Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Fair, C. K. (1990). MolEN. Enraf-Nonius, Delft, The Netherlands.
Hall, S. R. \& du Boulay, D. (1995). Xtal_GX. University of Western Australia, Australia.
Mori, A., Li, Z. H. \& Takeshita, H. (1989). Bull. Chem. Soc. Jpn, 62, 3029-3030.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

